Any backup strategy starts with a concept of a data repository. The backup data needs to be stored somehow and probably should be organized to a degree. It can be as simple as a sheet of paper with a list of all backup tapes and the dates they were written or a more sophisticated setup with a computerized index, catalog, or relational database. Different repository models have different advantages. This is closely related to choosing a backup rotation scheme.
Unstructured
An unstructured repository may simply be a stack of floppy disks or CD-R/DVD-R media with minimal information about what was backed up and when. This is the easiest to implement, but probably the least likely to achieve a high level of recoverability.
Full + Incremental
A Full + Incremental repository aims to make storing several copies of the source data more feasible. At first, a full backup (of all files) is taken. After that an incremental backup (of only the files that have changed since the previous full or incremental backup) can be taken. Restoring whole systems to a certain point in time would require locating the full backup taken previous to that time and all the incremental backups taken between that full backup and the particular point in time to which the system is supposed to be restored. This model offers a high level of security that something can be restored and can be used with removable media such as tapes and optical disks. The downside is dealing with a long series of incremental backups and the high storage requirements.
Full + Differential
A full + differential backup differs from a full + incremental in that after the full backup is taken, each partial backup captures all files created or changed since the full backup, even though some may have been included in a previous partial backup. Its advantage is that a restore involves recovering only the last full backup and then overlaying it with the last differential backup.
Mirror + Reverse Incremental
A Mirror + Reverse Incremental repository is similar to a Full + Incremental repository. The difference is instead of an aging full backup followed by a series of incremental backups; this model offers a mirror that reflects the system state as of the last backup and a history of reverse incremental backups. One benefit of this is it only requires an initial full backup. Each incremental backup is immediately applied to the mirror and the files they replace are moved to a reverse incremental. This model is not suited to use removable media since every backup must be done in comparison to the mirror.
Continuous data protection
This model takes it a step further and instead of scheduling periodic backups, the system immediately logs every change on the host system. This is generally done by saving byte or block-level differences rather than file-level differences. It differs from simple disk mirroring in that it enables a roll-back of the log and thus restore of old image of data.